Antibacterial and Anti-Fungal Activity of Copper and Nickel Nanoparticles Stabilized by Cationic Thiol Polyurethane Surfactants
Mostafa E. Hendawy,
Mohammed F. Zaky
Issue:
Volume 6, Issue 4, December 2018
Pages:
70-78
Received:
23 May 2018
Accepted:
5 June 2018
Published:
2 March 2019
DOI:
10.11648/j.ijbse.20180604.11
Downloads:
Views:
Abstract: Metal nanoparticles have attracted considerable interest particularly because of the size dependence of physical and chemical properties and its enormous technological potential. Among different metal nanoparticles, Copper and Nickel nanoparticles have attracted great attention. Grinding method is used to synthesize Copper and Nickel nanoparticles. In this paper, the new cationic Thiol polyurethane surfactants with different alkyl chain length were synthesized (PQ8, PQ10 and PQ12). The chemical structure of the synthesized surfactants was confirmed using infra-red spectroscopy (IR) and proton nuclear magnetic resonance spectroscopy (1H-NMR). The nanostructure of the synthesized surfactant with Copper and Nickel nanoparticles with diameters ranging from 10 to 55 nm was prepared and characterized using ultra violet spectrophotometer (UV), infra-red spectroscopy (IR) and transmission electron microscope (TEM). The results declare formation and stabilization of Copper and Nickel nanoparticle using synthesized cationic surfactants. Antimicrobial activity of the synthesized cationic surfactants and their nanostructure with Copper and Nickel nanoparticles were evaluated against pathogenic bacteria and fungi. The antimicrobial activity showed the enhancement in the antimicrobial activity of the synthesized cationic surfactants in the nanostructures form.
Abstract: Metal nanoparticles have attracted considerable interest particularly because of the size dependence of physical and chemical properties and its enormous technological potential. Among different metal nanoparticles, Copper and Nickel nanoparticles have attracted great attention. Grinding method is used to synthesize Copper and Nickel nanoparticles....
Show More